Descriptions and Examples for the POV-Ray Raytracer by Friedrich A. Lohmüller
Loops, Sine, Cosine and POV-Ray     
Italiano Italiano
Français français
Deutsch Deutsch

Home
- POV-Ray Tutorial
   Loops,
   Sine, Cosine
   and POV-Ray
 >1. Linear Waves
   2. Concentric waves
   3. Flying Carpets
                                              - Download

Sine and Cosine linear

This description wants to demonstrate some games with sine and cosine function. Some basics about loops will show the following sample of a double nested while loop.
First we consider a simple loop which places little spheres along the x axis between x = 5 bis x = +5:

#declare Ball =
  sphere{<0,0,0>,0.25
    texture{
      pigment{color rgb<1,0.8,0>}
      finish {diffuse 0.9 phong 1}
    }// end of texture
  }// end of sphere

//------------------------------------
#declare X = -5;    // start value X
#declare EndX = 5;  //   end value X
#declare Step = 0.5;// step value

#while ( X < EndX + Step)//loop start
  object{ Ball translate <X,0,0>}

#declare X = X + Step; // next X
#end // ------------------- loop end

If you nest the existing loop in an additional loop, which runs throug the z-values between z = -5 bis z = +5, you will get a quadratic area which is totally covered by spheres:

#declare Z = -5;  // start value Z
#declare EndZ = 5;  //   end value Z
#declare Step = 0.5;// step value
// loop start Z:
#while ( Z < EndZ + Step)

  #declare X = -5;  // start value X
  #declare EndX = 5;//   end value X
  //loop start X:
  #while ( X < EndX + Step)

   object{ Ball translate <X,0,Z>}

  #declare X = X + Step;//next X
  #end // ----------- loop end X

#declare Z = Z + Step; //next Z
#end // ------------ loop end Z

So far the necessary quick information about loops!
 
Now we want to bring some rythmic movement in this area. To do this we need to use the sine or the cosine function - in POV-Ray described by sin(A) respectively cos(A) and here A is the value of the angle messured in radians. Do we change the previous nested loop in the following way:
  object{ Ball translate < X, sin(X), Z> }   
or with the half value for the steps: Step = 0.25
 object{ Ball translate < X, sin(2*X), Z> }
we will get these images:


Overview Now it goes round and round ...!
top

© Friedrich A. Lohmüller, 2015
www.f-lohmueller.de
 
Visitors:
(since May-1999)
Thanks for your visit!